Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Immunol ; 15: 1338937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449861

RESUMO

Introduction: The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results: A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion: Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.


Assuntos
Tricotecenos , Zearalenona , Animais , Suínos , Formação de Anticorpos , Leucócitos Mononucleares , Proliferação de Células , Adjuvantes Imunológicos , ELISPOT , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
2.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770693

RESUMO

Industrial farming of livestock is increasingly focused on high productivity and performance. As a result, concerns are growing regarding the safety of food and feed, and the sustainability involved in their production. Therefore, research in areas such as animal health, welfare, and the effects of feed additives on animals is of significant importance. In this study, an in vitro co-culture model of the piglet gut was used to investigate the effects of two phytogenic feed additives (PFA) with similar compositions. Intestinal porcine epithelial cells (IPEC-J2) were co-cultivated with peripheral blood mononuclear cells (PBMC) to model the complex porcine gut environment in vitro. The effects of treatments on epithelial barrier integrity were assessed by means of transepithelial electrical resistance (TEER) in the presence of an inflammatory challenge. Protective effects of PFA administration were observed, depending on treatment duration and the model compartment. After 48 h, TEER values were significantly increased by 12-13% when extracts of the PFA were applied to the basolateral compartment (p < 0.05; n = 4), while no significant effects on cell viability were observed. No significant differences in the activity of a PFA based mainly on pure chemical compounds versus a PFA based mainly on complex, natural essential oils, and extracts were found. Overall, the co-culture model was used successfully to investigate and demonstrate beneficial effects of PFAs on intestinal epithelial barrier function during an inflammatory challenge in vitro. In addition, it demonstrates that the two PFAs are equivalent in effect. This study provides useful insights for further research on porcine gut health status even without invasive in vivo trials.


Assuntos
Fluorocarbonos , Óleos Voláteis , Animais , Suínos , Leucócitos Mononucleares , Técnicas de Cocultura , Células Epiteliais , Óleos Voláteis/farmacologia , Fluorocarbonos/farmacologia
3.
Arch Toxicol ; 97(4): 1079-1089, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781434

RESUMO

The impact of the Fusarium mycotoxin deoxynivalenol (DON) on the immune response against porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and infection was investigated. Forty-two weaned piglets were separated into seven groups and received three different diets: Low DON (1.09 ppm), High DON (2.81 ppm) or No DON. These three treatments were split further into either vaccinated (Ingelvac PRRSFLEX EU) and challenged with PRRSV 28 days post-vaccination, or only infected at day 28. A seventh group received no DON, no vaccination, and no infection. Two weeks after challenge infection, when pigs were euthanized, the number of IFN-γ producing lymphocytes in the blood of vaccinated animals was lower in pigs on High DON compared to animals on Low DON or No DON. Intracellular cytokine staining showed that vaccinated animals fed with the Low DON diet had higher frequencies of TNF-α/IFN-γ co-producing CD4+ T cells than the other two vaccinated groups, particularly in lung tissue. Vaccinated animals on High DON had similar viral loads in the lung as the non-vaccinated groups, but several animals of the Low DON or No DON group receiving vaccination had reduced titers. In these two groups, there was a negative correlation between lung virus titers and vaccine-specific TNF-α/IFN-γ co-producing CD4+ T cells located either in lung tissue or blood. These results indicate that after PRRSV vaccination and infection, high levels of DON negatively influence immune parameters and clearance of the virus, whereas low DON concentrations have immunomodulatory effects.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Fator de Necrose Tumoral alfa , Anticorpos Antivirais , Imunidade
4.
Planta Med ; 88(3-04): 262-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34144625

RESUMO

In intensive farming, piglets are exposed to various challenges that activate intestinal inflammatory processes, negatively affecting animal health and leading to economic losses. To study the role of the inflammatory response on epithelial barrier integrity, co-culture systems that mimic in vivo complexity are more and more preferred over cell monocultures. In this study, an in vitro gut co-culture model consisting of intestinal porcine epithelial cells and porcine peripheral blood mononuclear cells was established. The model provides an appropriate tool to study the role of the inflammatory response on epithelial barrier integrity and to screen for feed and food components, exerting beneficial effects on gut health. In the established model, inflammation-like reactions and damage of the epithelial barrier, indicated by a decrease of transepithelial electrical resistance, were elicited by activation of peripheral blood mononuclear cells via one of 3 stimuli: lipopolysaccharide, lipoteichoic acid, or concanavalin A. Two phytogenic substances that are commonly used as feed additives, licorice extract and oregano oil, have been shown to counteract the drop in transepithelial electrical resistance values in the gut co-culture model. The established co-culture model provides a powerful in vitro tool to study the role of intestinal inflammation on epithelial barrier integrity. As it consists of porcine epithelial and porcine blood cells it perfectly mimics in vivo conditions and imitates the inter-organ communication of the piglet gut. The developed model is useful to screen for nutritional components or drugs, having the potential to balance intestinal inflammation and strengthen the epithelial barrier integrity in piglets.


Assuntos
Células Epiteliais , Leucócitos Mononucleares , Animais , Técnicas de Cocultura , Células Epiteliais/fisiologia , Inflamação/induzido quimicamente , Mucosa Intestinal , Suínos
5.
Animals (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359186

RESUMO

Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (REC) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in REC. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.

6.
Toxins (Basel) ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003423

RESUMO

Lipopolysaccharides (LPS), also termed endotoxins, are the major component of the outer membrane of Gram-negative bacteria. In general, endotoxins in the intestine are considered harmless in healthy animals. However, different stressors, such as heat stress, can lead to a compromised gut barrier, resulting in endotoxin translocation. Chickens are considered to be less sensitive to the effects of LPS compared with other species, for example, humans, pigs, or calves, probably because of the lack of the functional-specific TRAM-TRIF signalling pathway (MyD88-independent). Therefore, six LPS preparations (three different strains with two different preparation methods each) were compared in murine macrophages and characterized according to their MyD88-dependent pathway activation. All tested LPS preparations induced a strong inflammatory response after 4 and 24 h on a murine macrophage cell line. However, there was a similar strong response in the gene expression profile as well as production of nitrite oxide and TNF-alpha from LPS of different strains and preparation methods. On the basis of the results of the in vitro study, one LPS preparation was chosen for the subsequent in vivo study with broilers to assess the effect of an oral LPS bolus (E. coli O55:B5 phenol extracted; 2 mg/kg b.w.) during heat stress conditions (10 h, 36 °C). The most pronounced effects were seen in broilers receiving the oral LPS bolus during heat stress conditions. The endotoxin activity in the intestine as well as the serum concentration of the 3-OH C14 (part of LPS) were increased. In addition, an increased expression of genes related to inflammation and stress response (e.g., IL-6, IL-1beta, HSP70) was observed, whereas the expression of genes associated with gut health (e.g., MUC2, FABP2) was decreased. To conclude, an increase of intestinal LPS combined with heat stress can pose a risk to animal health.


Assuntos
Galinhas , Citocinas/metabolismo , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Mediadores da Inflamação/metabolismo , Intestino Delgado/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Administração Oral , Animais , Biomarcadores/sangue , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Lipopolissacarídeos/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Ácidos Mirísticos/sangue , Células RAW 264.7 , Regulação para Cima
7.
Front Immunol ; 11: 2009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903433

RESUMO

Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates the feed of farm animals. Pigs with their monogastric digestive system are in particular sensitive to DON-contaminated feed. At high concentrations, DON causes acute toxic effects, whereas lower concentrations lead to more subtle changes in the metabolism. This applies in particular to the immune system, for which immunosuppressive but also immunostimulatory phenomena have been described. Research in human and rodent cell lines indicates that this may be partially explained by a binding of DON to the ribosome and subsequent influences on cell signaling molecules like mitogen-activated protein kinases. However, a detailed understanding of the influence of DON on functional traits of porcine immune cells is still lacking. In this study, we investigated the influence of DON on transcription factor expression and cytokine production within CD4+, CD8+, and γδ T cells in vitro. At a DON concentration, that already negatively affects proliferation after Concanavalin A stimulation (0.8 µM) an increase of T-bet expression in CD4+ and CD8+ T cells was observed. This increase in T-bet expression coincided with elevated levels of IFN-γ and TNF-α producing T-cell populations. Increases in T-bet expression and cytokine production were found in proliferating and non-proliferating T cells, although increases were more prominent in proliferating cell subsets. Differently, IL-17A production by CD4+ T cells was not influenced by DON. In addition, frequencies of regulatory T cells and their expression of Foxp3 were not affected. In γδ T cells, GATA-3 expression was slightly reduced by DON, whereas T-bet levels were only slightly modulated and hence IFN-γ, TNF-α, or IL-17A production were not affected. Our results show for the single-cell level that DON has the capacity to modulate the expression of transcription factors and related cytokines. In particular, they suggest that for CD4+ and CD8+ T cells, DON can drive T-cell differentiation into a pro-inflammatory type-1 direction, probably depending on the already prevailing cytokine milieu. This could have beneficial or detrimental effects in ongoing immune responses to infection or vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Fator de Transcrição GATA3/metabolismo , Micotoxinas/toxicidade , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/imunologia , Tricotecenos/toxicidade , Ração Animal , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Contaminação de Alimentos , Fusarium , Fator de Transcrição GATA3/genética , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Suínos , Proteínas com Domínio T/genética , Regulação para Cima
8.
Toxins (Basel) ; 11(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694331

RESUMO

The Fusarium mycotoxin deoxynivalenol (DON) contaminates animal feed worldwide. In vivo, DON modifies the cellular protein synthesis, thereby also affecting the immune system. However, the functional consequences of this are still ill-defined. In this study, peripheral blood mononuclear cells from healthy pigs were incubated with different DON concentrations in the presence of Concanavalin A (ConA), a plant-derived polyclonal T-cell stimulant. T-cell subsets were investigated for proliferation and expression of CD8α, CD27, and CD28, which are involved in activation and costimulation of porcine T cells. A clear decrease in proliferation of all ConA-stimulated major T-cell subsets (CD4+, CD8+, and γδ T cells) was observed in DON concentrations higher than 0.4 µM. This applied in particular to naïve CD4+ and CD8+ T cells. From 0.8 µM onwards, DON induced a reduction of CD8α (CD4+) and CD27 expression (CD4+ and CD8+ T cells). CD28 expression was diminished in CD4+ and CD8+ T cells at a concentration of 1.6 µM DON. None of these effects were observed with the DON-derivative deepoxy-deoxynivalenol (DOM-1) at 16 µM. These results indicate that DON reduces T-cell proliferation and the expression of molecules involved in T-cell activation, providing a molecular basis for some of the described immunosuppressive effects of DON.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos T/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Antígenos CD28/genética , Antígenos CD8/genética , Sobrevivência Celular/efeitos dos fármacos , Concanavalina A/farmacologia , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Ativação Linfocitária/genética , Suínos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
9.
Toxins (Basel) ; 11(10)2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590302

RESUMO

Forages are important components of dairy cattle rations but might harbor a plethora of mycotoxins. Ruminants are considered to be less susceptible to the adverse health effects of mycotoxins, mainly because the ruminal microflora degrades certain mycotoxins. Yet, impairment of the ruminal degradation capacity or high ruminal stability of toxins can entail that the intestinal epithelium is exposed to significant mycotoxin amounts. The aims of our study were to assess i) the mycotoxin occurrence in maize silage and ii) the cytotoxicity of relevant mycotoxins on bovine intestinal cells. In total, 158 maize silage samples were collected from European dairy cattle farms. LC-MS/MS-based analysis of 61 mycotoxins revealed the presence of emerging mycotoxins (e.g. emodin, culmorin, enniatin B1, enniatin B, and beauvericin) in more than 70% of samples. Among the regulated mycotoxins, deoxynivalenol and zearalenone were most frequently detected (67.7%). Overall, 87% of maize silages contained more than five mycotoxins. Using an in vitro model with calf small intestinal epithelial cells B, the cytotoxicity of deoxynivalenol, nivalenol, fumonisin B1 and enniatin B was evaluated (0-200 µM). Absolute IC50 values varied in dependence of employed assay and were 1.2-3.6 µM, 0.8-1.0 µM, 8.6-18.3 µM, and 4.0-6.7 µM for deoxynivalenol, nivalenol, fumonisin B1, and enniatin B, respectively. Results highlight the potential relevance of mycotoxins for bovine gut health, a previously neglected target in ruminants.


Assuntos
Micotoxinas/análise , Micotoxinas/toxicidade , Silagem/análise , Zea mays , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Intestinos/citologia , Risco
10.
Toxins (Basel) ; 11(9)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540008

RESUMO

Feed samples are frequently contaminated by a wide range of chemically diverse natural products, which can be determined using highly sensitive analytical techniques. Next to already well-investigated mycotoxins, unknown or unregulated fungal secondary metabolites have also been found, some of which at significant concentrations. In our study, 1141 pig feed samples were analyzed for more than 800 secondary fungal metabolites using the same LC-MS/MS method and ranked according to their prevalence. Effects on the viability of the 28 most relevant were tested on an intestinal porcine epithelial cell line (IPEC-J2). The most frequently occurring compounds were determined as being cyclo-(L-Pro-L-Tyr), moniliformin, and enniatin B, followed by enniatin B1, aurofusarin, culmorin, and enniatin A1. The main mycotoxins, deoxynivalenol and zearalenone, were found only at ranks 8 and 10. Regarding cytotoxicity, apicidin, gliotoxin, bikaverin, and beauvericin led to lower IC50 values, between 0.52 and 2.43 µM, compared to deoxynivalenol (IC50 = 2.55 µM). Significant cytotoxic effects were also seen for the group of enniatins, which occurred in up to 82.2% of the feed samples. Our study gives an overall insight into the amount of fungal secondary metabolites found in pig feed samples compared to their cytotoxic effects in vitro.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Fungos/metabolismo , Micotoxinas/análise , Micotoxinas/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Secundário , Suínos
11.
Clin Oral Investig ; 23(12): 4189-4194, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30790085

RESUMO

OBJECTIVES: The aim of this study was to investigate the attitude, observations, and knowledge of German dentists regarding the management of dry mouth. MATERIALS AND METHODS: A questionnaire including queries about attitudes, observations, and treatment options in patients with dry mouth was developed and sent to all 1251 dentist members of a regional German dental association. RESULTS: An overall total of 284 returned questionnaires were included in the analyses, which relates to a response rate of 22.7%. Dentists infrequently encountered dry mouth in their clinical routine, yet were well aware that patients suffer from the symptoms of dry mouth; for affected patients, the majority of participating dentists provided specific dental prophylaxis measures. Drug side effects, neoplasia, and psychological disorders were regarded as the primary etiological factors for dry mouth, and caries, increased plaque formation, and rhagades as the most frequently observed clinical symptoms. While the majority of participating dentists was of the opinion that saliva substitutes are useful treatment options in patients with dry mouth, only few frequently recommended their use. Mechanical and gustatory stimulation of salivary flow as well as the advice to rinse with water were the most frequently pursued treatment options. CONCLUSIONS: Despite the high prevalence of dry mouth identified in epidemiological studies, it appears to be an infrequent observation in clinical routine. CLINICAL RELEVANCE: Pre- and postgraduate education should sensitize dentists for dry mouth and its treatment options.


Assuntos
Odontólogos/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Xerostomia/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Atitude do Pessoal de Saúde , Relações Dentista-Paciente , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Xerostomia/etiologia , Adulto Jovem
12.
Toxicol Lett ; 305: 110-116, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708112

RESUMO

Fumonisin B1 (FB1), mainly produced by Fusarium verticillioides and Fusarium proliferatum, can be converted to the less toxic metabolite hydrolyzed FB1 (HFB1) by enzymatic degradation. The application of an FB1degrading enzyme as a feed additive is a strategy to reduce fumonisin exposure of animals. However, the difference between the effect of FB1 and HFB1 on porcine intestinal immunity is poorly documented. We investigated the toxic effects of FB1 and HFB1 exposure on porcine gut barrier function and intestinal immunity by using a co-culture model of intestinal porcine epithelial cells (IPEC-J2) and porcine peripheral blood mononuclear cells (PBMCs). First, we confirmed that Fusarium mycotoxin (deoxynivalenol; DON), in the presence of an endotoxin (lipopolysaccharide: LPS), disrupted gut permeability of IPEC-J2 and induced inflammatory response in the co-culture system. FB1 induced additional damage to gut barrier function and promoted pro-inflammatory responses in the presence of LPS and DON compared to only LPS/DON treatment. In the co-culture system, FB1/LPS/DON induced increased cell death of PBMCs and pro-inflammatory cytokines than LPS/DON treatment. In contrast, the application of HFB1 resulted in reduced levels of chemokines and pro-inflammatory cytokines together with marginal immune cell death compared to FB1/LPS/DON in the IPEC-J2/PBMC co-culture system. These findings suggest that FB1 aggravates LPS/DON-induced intestinal inflammation, and HFB1 showed less toxicity to immune response. Therefore, enzymatic degradation of FB1 to HFB1 could be an effective strategy to reduce intestinal inflammation in pigs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fumonisinas/química , Fumonisinas/toxicidade , Mucosa Intestinal/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Animais , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Células Epiteliais/fisiologia , Leucócitos Mononucleares/fisiologia , Suínos
13.
J Anim Physiol Anim Nutr (Berl) ; 103(1): 210-220, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30353576

RESUMO

BACKGROUND: The gut barrier is essential for animal health as it prevents the passage of potentially harmful foreign substances. The epithelial tight junctions support the intestinal barrier and can be disrupted by stress caused, for example, by pathogens or dietary or environmental factors, predisposing the host to disease. In animal husbandry, phytogenics (plant-derived feed additives) are used to support and maintain growth, feed efficiency and health. Therefore, several phytogenics were tested in vitro for their influence on the barrier function recovery of intestinal porcine epithelial cells (IPEC-J2) after disruption, particularly on the abundance of tight junction proteins. RESULTS: IPEC-J2 treated with 1,000 µg/ml liquorice root extract, 80 µg/ml plant powder mix, or 80 µg/ml angelica root powder showed significantly higher trans-epithelial electric resistance (TEER) 24 hr after tight junction disruption via a calcium switch assay than the control. In contrast, cells treated with 1,000 µg/ml oak bark extract showed a significantly lower TEER after 6 hr but not at later time points. The increased TEER caused by the liquorice root extract correlated with an increase in the abundance of the tight junction protein claudin-4. CONCLUSIONS: This study suggests potential beneficial effects of liquorice and angelica root extracts on the gut barrier function when used as feed additives for livestock. Further studies, especially in vivo, are necessary to confirm these findings.


Assuntos
Cálcio/farmacologia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/citologia , Extratos Vegetais/efeitos adversos , Angelica/química , Animais , Cálcio/metabolismo , Linhagem Celular , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glycyrrhiza/química , Quercus/química , Suínos , Proteínas de Junções Íntimas , Junções Íntimas/efeitos dos fármacos
14.
J Anim Sci ; 96(9): 3657-3669, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29982751

RESUMO

Due to increasing concerns about the use of antibiotic growth promoters (AGP) in livestock production and their complete ban in the European Union in 2006, suitable alternatives are urgently needed. Among others, anti-inflammatory activities of AGP are discussed as their putative mode of action. As numerous phytochemicals are known to modulate the cellular antioxidant capacity and immune response, we studied the antioxidative and anti-inflammatory properties of a phytogenic (plant-derived) feed additive (PFA) in intestinal porcine epithelial cells (IPEC-J2). The effects of the PFA were compared with those of selected phytogenic ingredients (grape seed extract [GRS], licorice extract [LIC], menthol [MENT], methyl salicylate [MES], oak bark extract [OAK], oregano essential oil [ORE], and a plant powder mix [PLA]), and with the effects of the AGP tylosin (TYL). Oxidative or inflammatory stress was induced by stimulating IPEC-J2 with hydrogen peroxide (H2O2; 0.5 mM) or tumor necrosis factor alpha (TNF-α; 10 ng/mL), respectively. The antioxidative effects of feed additives were assessed with a reactive oxygen species (ROS)-sensitive probe and by measuring the expression of 6 antioxidative target genes via quantitative real-time PCR (RT-qPCR). Anti-inflammatory potential was analyzed using a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) reporter gene assay. Moreover, the expression levels of 6 NF-κB target genes were measured using RT-qPCR analysis, and the release of IL-6 was analyzed via ELISA. Significant decreases in cellular ROS upon H2O2 treatment were observed for the PFA (P < 0.001), LIC (P < 0.001), ORE (P < 0.05), and GRS (P < 0.01). No significant changes in the expression of antioxidative genes were found. NF-κB activation upon TNF-α treatment was significantly inhibited by the PFA (P < 0.05) and by ORE (P < 0.001). Moreover, the PFA and ORE significantly reduced the gene expression of IL-6 (P < 0.001), IL-8 (P < 0.001), and C-C motif chemokine ligand 2 (CCL2; P < 0.05), as well as the release of IL-6 (P < 0.05). The other phytogenic compounds as well as the AGP TYL did not significantly affect any of the inflammatory parameters. In summary, we revealed the antioxidative properties of the PFA, LIC, ORE, and GRS, as well as anti-inflammatory properties of the PFA and ORE in IPEC-J2, providing a better understanding of the mode of action of this PFA under our experimental conditions.


Assuntos
Ração Animal , Células Epiteliais , Inflamação , Estresse Oxidativo , Suínos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Peróxido de Hidrogênio , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Intestinos , NF-kappa B/genética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Suínos/fisiologia , Fator de Transcrição RelA , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxins (Basel) ; 10(4)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641442

RESUMO

Deoxynivalenol (DON) is one of the most prevalent mycotoxins, contaminating cereals and cereal-derived products. Its derivative deepoxy-deoxynivalenol (DOM-1) is produced by certain bacteria, which either occur naturally or are supplemented in feed additive. DON-induced impairments in protein synthesis are particularly problematic for highly proliferating immune cells. This study provides the first comparison of the effects of DON and DOM-1 on the concanavalin A-induced proliferation of porcine, chicken, and bovine peripheral blood mononuclear cells (PBMCs). Therefore, isolated PBMCs were treated with DON (0.01-3.37 µM) and DOM-1 (1.39-357 µM) separately, and proliferation was measured using a bromodeoxyuridine (BrdU) assay. Although pigs are considered highly sensitive to DON, the present study revealed a substantially higher sensitivity of bovine (IC50 = 0.314 µM) PBMCs compared to chicken (IC50 = 0.691 µM) and porcine (IC50 = 0.693 µM) PBMCs. Analyses on the proliferation of bovine T-cell subsets showed that all major subsets, namely, CD4⁺, CD8ß⁺, and γδ T cells, were affected to a similar extent. In contrast, DOM-1 did not affect bovine PBMCs, but reduced the proliferation of chicken and porcine PBMCs at the highest tested concentration (357 µM). Results confirm the necessity of feed additives containing DON-to-DOM-1-transforming bacteria and highlights species-specific differences in the DON sensitivity of immune cells.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Concanavalina A , Aves Domésticas , Suínos
16.
Mycotoxin Res ; 33(4): 297-308, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28741250

RESUMO

Deoxynivalenol (DON), a trichothecene produced by various Fusarium species, is one of the most prevalent food- and feed-associated mycotoxins. The effects of DON and deepoxy-deoxynivalenol (DOM-1) were assessed in five different cell lines from different tissues and species starting from the first line of defense, the trout gill (RTgill-W1) and pig intestinal cells (IPEC-1 and IPEC-J2) over immune cells, as second line of defense (mouse macrophages RAW 264.7) to human liver cells (HepG2). Viability was assessed with a WST-1 assay, except for RTgill-W1, where a neutral red (NR) and sulforhodamine B (SRB) assay was performed. Additionally, more sensitive parameters, such as interleukin-, nitric oxide (NO)-, and albumin-release were determined. Viability was affected by DON at concentrations starting at 10 µmol/L (RTgill-W1), 0.9 µmol/L (IPEC-1), 3.5 µmol/L (IPEC-J2), and 0.9 µmol/L (HepG2), whereas DOM-1 did not have such an effect. Additionally, NO was decreased (0.84 µmol/L DON), whereas interleukin (IL)-6 was increased (0.42 µmol/L DON) in lipopolysaccharide (LPS)-stimulated DON-, but not DOM-1-treated RAW cells. Tumor necrosis factor (TNF)-α release, however, was not affected. Interestingly, albumin secretion of HepG2 cells was decreased by both DON and DOM-1 but at a much higher concentration for DOM-1 (228 versus 0.9 µmol/L for DON). 98.9% of DOM-1 was retrieved by liquid chromatography tandem mass spectrometry at the end of the experiment, proving its stability. In this study, IL-6 was the most sensitive parameter, followed by NO and albumin release and viability for HepG2 and IPEC-1.


Assuntos
Micotoxinas/farmacologia , Tricotecenos/farmacologia , Animais , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Citocinas/análise , Humanos , Camundongos , Micotoxinas/metabolismo , Suínos , Espectrometria de Massas em Tandem , Tricotecenos/metabolismo , Truta
17.
Mycotoxin Res ; 33(1): 25-37, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27817099

RESUMO

The mycotoxin deoxynivalenol (DON) contaminates agricultural commodities worldwide, posing health threats to humans and animals. Associated with DON are derivatives, such as deepoxy-deoxynivalenol (DOM-1), produced by enzymatic transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Using differentiated porcine intestinal epithelial cells (IPEC-J2), we provide the first multi-parameter comparative cytotoxicity analysis of DON and DOM-1, based on the parallel evaluation of lysosomal activity, total protein content, membrane integrity, mitochondrial metabolism and ATP synthesis. The study investigated the ability of DON and-for the first time of its metabolite DOM-1-to induce apoptosis, mitogen-activated protein kinase (MAPK) signalling, oxidative events and alterations of mitochondrial structure in porcine intestinal epithelial cells (IECs). The degree of DON toxicity strongly varied, depending on the cytotoxicity parameter evaluated. DON compromised viability according to the parameters of lysosomal activity, total protein content and membrane integrity, but increased viability according to assays based on mitochondrial metabolism and ATP synthesis. DON induced expression of cleaved caspase-3 (maximum induction 3.9-fold) and MAPK p38 and p42/p44 (maximum induction 2.51- and 2.30-fold, respectively). DON altered mitochondrial morphology, but did not increase intracellular ROS. DOM-1-treated IPEC-J2 remained unaffected at equimolar concentrations in all assays, thereby confirming the safety of feed additives using DON- to DOM-1-transforming bacteria. The study additionally highlights that an extensive multi-parameter analysis significantly contributes to the quality of in vitro data.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Micotoxinas/toxicidade , Tricotecenos/toxicidade , Animais , Apoptose , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Transdução de Sinais/efeitos dos fármacos , Suínos
18.
Toxins (Basel) ; 8(11)2016 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-27869761

RESUMO

The human, animal and plant pathogen Fusarium, which contaminates agricultural commodities worldwide, produces numerous secondary metabolites. An example is the thoroughly-investigated deoxynivalenol (DON), which severely impairs gastrointestinal barrier integrity. However, to date, the toxicological profile of other Fusarium-derived metabolites, such as enniatins, beauvericin, moniliformin, apicidin, aurofusarin, rubrofusarin, equisetin and bikaverin, are poorly characterized. Thus we examined their effects-as metabolites alone and as metabolites in combination with DON-on the intestinal barrier function of differentiated intestinal porcine epithelial cells (IPEC-J2) over 72 h. Transepithelial electrical resistance (TEER) was measured at 24-h intervals, followed by evaluation of cell viability using neutral red (NR) assay. Enniatins A, A1, B and B1, apicidin, aurofusarin and beauvericin significantly reduced TEER. Moniliformin, equisetin, bikaverin and rubrofusarin had no effect on TEER. In the case of apicidin, aurofusarin and beauvericin, TEER reductions were further substantiated by the addition of otherwise no-effect DON concentrations. In all cases, viability was unaffected, confirming that TEER reductions were not due to compromised viability. Considering the prevalence of mycotoxin contamination and the diseases associated with intestinal barrier disruption, consumption of contaminated food or feed may have substantial health implications.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fusarium/metabolismo , Mucosa Intestinal/citologia , Micotoxinas/toxicidade , Animais , Linhagem Celular , Suínos
19.
Toxins (Basel) ; 8(9)2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618100

RESUMO

Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Junções Íntimas/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Impedância Elétrica , Ativação Enzimática , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Permeabilidade , Inibidores de Proteínas Quinases/farmacologia , Suínos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/enzimologia , Junções Íntimas/patologia , Fatores de Tempo
20.
Toxins (Basel) ; 8(4): 89, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27023602

RESUMO

One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B1 (FB1) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB1 at any concentration on dermal or epidermal cells. However, FB1 significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB1 (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB1 impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB1 might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB1 on the equine hoof in more detail.


Assuntos
Fumonisinas/toxicidade , Casco e Garras/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Casco e Garras/citologia , Casco e Garras/metabolismo , Casco e Garras/patologia , Cavalos , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...